
/

Lighthouse
Security Assessment
December 18, 2020

Prepared For:
Mehdi Zerouali | Sigma Prime
mehdi@sigmaprime.io

Prepared By:
Sam Moelius | Trail of Bits Artur Cygan | Trail of Bits
sam.moelius@trailofbits.com artur.cygan@trailofbits.com

Jim Miller | Trail of Bits Will Song | Trail of Bits
james.miller@trailofbits.com will.song@trailofbits.com

Changelog:
June 1, 2020: Initial report delivered
July 20, 2020: Added Appendix C. Client’s Responses to Findings
July 27, 2020: Copyedited
August 24, 2020: Updated Appendix C to Fix Log
October 9, 2020: Updated to include review of network layer
October 19, 2020: Copyedited
December 18, 2020: Updated Fix Log to include network layer

mailto:mehdi@sigmaprime.io
mailto:sam.moelius@trailofbits.com
mailto:artur.cygan@trailofbits.com
mailto:james.miller@trailofbits.com
mailto:will.song@trailofbits.com

/

Executive Summary

Consensus Layer
Network Layer

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Codebase uses a crate with a RUSTSEC advisory
2. Build process relies on outdated dependencies
3. Assumptions about struct field initialization order
4. Comments suggest code and documentation are out of date
5. Downloaded deposit contract is not validated with a checksum
6. BeaconState objects are mutated upon error
7. Errors produced by “ ParallelValidatorTreeHash::leaves ” are non-deterministic
8. Memory leak due to non-graceful shutdown
9. Builder pattern is not strictly adhered to
10. rust-crypto is unmaintained and a better alternative should be used
11. Consider using argon2id as a KDF
12. Bias in BLS secret key generation
13. Unnecessary use of panicking functions
14. Password to validator private key is stored in plaintext
15. Password to wallet is stored in plaintext
16. Secret key passed as CLI argument
17. Insufficient network layer unit tests
18. Memory exhaustion via Multiaddr deserialization
19. SSZ snappy decoder reads more data than specification recommends
20. Gossipsub parameters deviate from the specification

A. Vulnerability Classifications

B. Non–Security-Related Findings

C. Consensus Fix Log
Detailed Fix Log
Detailed Issue Discussion

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 1

/

D. From Trait Implementation Fuzzing

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 2

/

Executive Summary
From May 18 through October 9, 2020, Sigma Prime engaged Trail of Bits to review the
security of Lighthouse, an Ethereum 2.0 client. This assessment was conducted in two
phases. In the first phase (May 18 through May 29, 2020), Trail of Bits reviewed the
consensus layer, with four engineers devoting four person-weeks to commit ddd63c0 of the
Lighthouse repository. In the second phase, (October 5 through October 9, 2020) Trail of
Bits reviewed the network layer, with three engineers devoting two person-weeks to
commit da44821 of the Lighthouse repository.

Consensus Layer
Due to the length of the engagement and the complexity of the codebase, we focused on
the areas that Sigma Prime considered to be the riskiest, specifically:

● Attestation processing
● The beacon chain caches
● Block processing
● Key management
● The operation pool
● Slashing protection
● SSZ decoding
● The BLS library

Within each of these areas, we paid particular attention to deadlock/concurrency issues,
integer overflows, out-of-bounds array accesses, and error propagation/suppression
issues.

During the first week, we verified that we could build the codebase, and that all unit tests
passed. We ran cargo-audit , cargo-upgrades , and cargo-clippy over the codebase. We
began manual review, focusing on the contents of the beacon_node directory (minus the
eth2-libp2p , network , and rest_api subdirectories) and the sigp/milagro_bls library.

During the second week, we expanded our manual review beyond the beacon_node
directory to include key management and non–BLS-related cryptographic code. We ran the
unit tests with address sanitizer and thread sanitizer enabled. We also developed a custom
analysis to look for unintentional state changes when errors occur.

Our efforts resulted in three high-, one medium-, three low-, and nine
informational-severity findings. The three high-severity findings concern exposure of
potentially sensitive information. Lesser findings concern cryptography, error reporting, a
memory leak, and areas where the code could generally be updated.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 3

https://github.com/sigp/lighthouse/tree/ddd63c0de146133ce7877bee218710a2b41defd8
https://github.com/sigp/lighthouse/tree/da44821e39018a7b480f6ab3ef398776e63446bb

/

Although using thread sanitizer did not produce any findings, it’s worth mentioning. Using a
command similar to that of Figure 8.2 , we ran the unit tests with thread sanitizer enabled,
and it produced multiple data race warnings. Most of these appear to be false positives
due to the thread sanitizer’s ignorance of certain synchronization primitives. There was one
report concerning rayon_core::registry::global_registry that we could not rule out
as a false positive. However, given the maturity of rayon ’s codebase, and the nature of the
bug considered, we directed our attention elsewhere.

Lighthouse bears the characteristics typical of a project under active development. At
times, though, this made the code difficult to navigate. For example, the subject of this
audit was the consensus layer, i.e., everything above the network layer. However, both
consensus and networking code are intermingled within the beacon_node directory. Ideally,
the project structure would reflect this conceptual division.

As a more specific example, we noticed that a mix of styles is used in object construction
(TOB-LIHO-009). Ideally, one style would be used throughout. We recommend that such
architectural issues be addressed early to avoid a major refactor later on.

As mentioned above, we focused on the areas that Sigma Prime considered to be the
riskiest. However, due the length of the engagement and the complexity of the code, we
feel that Lighthouse could benefit from additional security review. If budgetary constraints
allow, we recommend that at least two additional engineer-weeks be spent on:

● The shuffling algorithm
● Fork choice
● Determination of the genesis block
● The validator client
● Extending existing fuzzing work
● Revisiting areas covered in this report, especially error-handling code

Network Layer
In this phase of the engagement, we focused on the eth2_libp2p and network crates. We
verified that the crates’ unit tests passed, ran the unit tests under thread sanitizer,
computed their code coverage, and checked them for unintentional state changes when
errors occur (i.e., using the analysis that produced TOB-LIHO-006).

We also manually reviewed the code for compliance with the Ethereum 2.0 networking
specification ; verified correct use of the Noise XX protocol; and fuzzed all but two of the
crates’ From trait implementations and a few similar functions.

Our efforts resulted in one low-severity and three informational-severity findings. The one
low-severity finding concerns a bug in a rust-libp2p deserialization function. The three

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 4

https://github.com/ethereum/eth2.0-specs/blob/v0.12.3/specs/phase0/p2p-interface.md
https://github.com/ethereum/eth2.0-specs/blob/v0.12.3/specs/phase0/p2p-interface.md

/

informational findings concern unit test code coverage and two minor deviations from the
Ethereum 2.0 specification.

In addition to the four new findings, we wrote an appendix detailing how we fuzzed the
eth2_libp2p and network crates’ From trait implementations.

Our main recommendation is to write additional unit tests for the eth2_libp2p and
network crates. Unit tests help expose errors, provide a sort of documentation of the code,
and exercise the code in a more systematic way than any human can, which helps protect
against regressions. Finally, we believe additional unit tests could have revealed more
results through our analyses, e.g., fuzzing and looking for unintentional state changes
when errors occur.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 5

/

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name Lighthouse

Version ddd63c0de146133ce7877bee218710a2b41defd8

da44821e39018a7b480f6ab3ef398776e63446bb

Type Rust

Platforms POSIX

Dates May 18–May 29, 2020
October 5–October 9, 2020

Method Whitebox

Consultants Engaged 4

Level of Effort 6 person-weeks

Total High-Severity Issues 3 ◼◼◼

Total Medium-Severity Issues 1 ◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Total 20

Configuration 1 ◼

Cryptography 3 ◼◼◼

Data Exposure 3 ◼◼◼

Data Validation 1 ◼

Denial of Service 4 ◼◼◼◼

Error Reporting 3 ◼◼◼

Patching 4 ◼◼◼◼

Undefined Behavior 1 ◼

Total 20

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 6

https://github.com/sigp/lighthouse/tree/ddd63c0de146133ce7877bee218710a2b41defd8
https://github.com/sigp/lighthouse/tree/da44821e39018a7b480f6ab3ef398776e63446bb

/

Engagement Goals
The engagement was scoped to provide a security assessment of the consensus and
network layers of the Lighthouse repository.

Specifically, we sought to answer the following questions:

● Are deadlocks or other concurrency issues possible?
● Are integer overflows possible?
● Is out-of-bounds array access possible?
● Are there error propagation issues, e.g., are errors unintentionally suppressed?
● Can remote code execution be achieved through the network layer?
● Is it possible to cause a Lighthouse node to miss packets?
● Are any denial-of-service vulnerabilities present in the code base?

Coverage
The project as a whole was analyzed with cargo-audit and cargo-upgrades . In addition,
the following specific components were examined.

Attestation processing. Manually reviewed. Subject to static analysis by cargo-clippy .
Unit tests verified to pass. Unit tests run with address sanitizer and thread sanitizer
enabled. Unit tests checked for state changes upon error. Unit tests reviewed for code
coverage.

Beacon chain caches. Manually reviewed. Subject to static analysis by cargo-clippy . Unit
tests verified to pass. Unit tests run with address sanitizer and thread sanitizer enabled.
Unit tests checked for state changes upon error. Unit tests reviewed for code coverage.

Block processing. Manually reviewed. Subject to static analysis by cargo-clippy . Unit
tests verified to pass. Unit tests run with address sanitizer and thread sanitizer enabled.
Unit tests checked for state changes upon error (see TOB-LIHO-006). Unit tests reviewed
for code coverage.

Key management. Manually reviewed.

Operation Pool. Manually reviewed. Subject to static analysis by cargo-clippy . Unit tests
verified to pass. Unit tests run with address sanitizer and thread sanitizer enabled. Unit
tests checked for state changes upon error. Unit tests reviewed for code coverage.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 7

/

Slashing protection. Manually reviewed. Subject to static analysis by cargo-clippy . Unit
tests verified to pass. Unit tests run with address sanitizer and thread sanitizer enabled.
Unit tests checked for state changes upon error. Unit tests reviewed for code coverage.

SSZ decoding. Manually reviewed. Subject to static analysis by cargo-clippy . Unit tests
verified to pass. Unit tests run with address sanitizer and thread sanitizer enabled. Unit
tests checked for state changes upon error. Unit tests reviewed for code coverage.

sigp/milagro_bls. A brief review of sigp/milagro_bls , its upstream dependency
incubator , and their usage in Lighthouse was conducted for implementation correctness
and common pitfalls. Apart from a lack of tests in milagro_bls , of which there are plenty in
the incubator module, there was nothing of note to report. In the time spent reviewing the
implementation of the curve and pairing function, we found no issues.

eth2_libp2p crate. Manually reviewed. Unit tests verified to pass. Unit tests run with
thread sanitizer enabled. Unit tests checked for state changes upon error. Unit tests
reviewed for code coverage. All but two From trait implementations and some similar
functions fuzzed. Verified correct use of the Noise XX protocol.

network crate. Manually reviewed. Unit tests verified to pass. Unit tests run with thread
sanitizer enabled. Unit tests checked for state changes upon error. Unit tests reviewed for
code coverage. From trait implementation and some similar functions fuzzed.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 8

/

Recommendations Summary
This section aggregates all the recommendations made during the engagement.
Short-term recommendations address the immediate causes of issues. Long-term
recommendations pertain to the development process and long-term design goals.

Short Term
❏ Upgrade rusqlite from 0.22.0 to 0.23.1 . Patch crate r2d2_sqlite to use rusqlite
0.23.1 , and use the patched version. These steps will eliminate potential memory
corruption vulnerabilities. TOB-LIHO-001

❏ Update dependencies to the latest version wherever possible. Using out-of-date
dependencies could mean critical bug fixes are missed. TOB-LIHO-002

❏ Adjust the Decode macro so that decoding completes prior to struct initialization.
Doing so will eliminate potential undefined behavior. TOB-LIHO-003

❏ Remove all legacy code from the codebase before considering the code
production-ready, and ensure that documentation is up to date and accurate. These
steps will reduce the risk of using legacy code improperly, and will facilitate onboarding of
new developers. TOB-LIHO-004

❏ Add a sha256 checksum to the build code and validate the downloaded file with it.
Doing so will reduce the risk of an attacker gaining control of this file. TOB-LIHO-005

❏ Adjust the implementation of process_block_header , process_proposer_slashings ,
and process_exits so they do not modify the state argument upon error. This will
reduce the likelihood of an error having an unintentional, lasting effect on the program’s
state. TOB-LIHO-006

❏ Add an error type to represent multiple errors, and adjust the implementation of
leaves so that it returns an instance of this “multiple error” error type. Eliminating the
use of ParallelIterator::collect will help ensure that errors are not suppressed and
that valuable system information is not lost. TOB-LIHO-007

❏ Re-implement the shutdown as described above to eliminate memory leaks.
TOB-LIHO-008

❏ Adopt one pattern, be it the “Builder Pattern,” the “Init Struct Pattern,” or
something else, and try to adhere to it. This will make your code easier to read,
understand, and reason about. TOB-LIHO-009

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 9

/

❏ Ensure that nobody ever touches the IV length. Setting the IV length to anything other
than 16 could introduce undefined behavior. TOB-LIHO-010

❏ Consider revising EIP-2335 to include argon2id as a possible KDF. As argued,
argon2id is a better choice than scrypt or PBKDF2. Incorporating argon2id into EIP-2335
will provide better security to the community as a whole. TOB-LIHO-011

❏ Consider revising EIP-2333 so that the mod_r operation becomes uniformly
distributed, or can fail. Adjusting the EIP will provide better security to the community as
a whole. TOB-LIHO-012

❏ Change the code to eliminate panics in the indicated places. This will eliminate a
potential denial-of-service vector. TOB-LIHO-013

❏ Encrypt the validator key with a password and require the user to enter the
password on Lighthouse startup. This will eliminate the need to store sensitive
information in plaintext on the filesystem. TOB-LIHO-014

❏ Require the user to enter the wallet password on Lighthouse startup. This will
eliminate the need to store sensitive information in plaintext on the filesystem.
TOB-LIHO-015

❏ Remove the option to pass p2p-priv-key from the command line. Passing this option
on the command line makes it accessible to an attacker. TOB-LIHO-016

❏ Add unit tests for eth2_libp2p and network crate functions not currently exercised
by unit tests. Ideally, there will be at least one test for each “ happy ” (successful) path, and
at least one test for each “sad” (failing) path. A comprehensive set of unit tests will help
expose errors, protect against regressions, and provide a sort of documentation to users.
TOB-LIHO-017

❏ Patch the code in Figure 18.1 by limiting the size of the value passed to
Vec::with_capacity . Use the patched version of rust-libp2p until the bug is fixed
upstream. These steps will eliminate a potential denial-of-service attack. TOB-LIHO-018

❏ When reading SSZ encoded data, limit the size of the read buffer to
max_compressed_len . This will make a subsequent check against max_compressed_len
unnecessary and will bring Lighthouse more in line with the Ethereum 2.0 specification.
TOB-LIHO-019

❏ Adjust either the implementation or the specification so that the parameter
choices match and desired network performance is achieved. TOB-LIHO-020

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 10

https://crmbusiness.wordpress.com/2015/04/29/developers-need-to-stop-being-so-happy/

/

Long Term
❏ Regularly run cargo-audit over the codebase to help reveal similar bugs.
TOB-LIHO-001

❏ Regularly run cargo-upgrades and cargo update --dry-run over the codebase to
ensure that the project stays up to date with its dependencies. TOB-LIHO-002

❏ Regularly run cargo-clippy over the codebase to help reveal similar bugs .
TOB-LIHO-003

❏ Ensure that deprecated code is tracked in an issue-tracking system so it’s not used
in production. TOB-LIHO-004

❏ Validate all important files downloaded from the Internet with a checksum. This
will help ensure that the application functions correctly following an unexpected content
change, be it malicious or otherwise. TOB-LIHO-005

❏ Use mutability only where absolutely necessary, and regularly scrutinize those
uses to help ensure that bugs are not introduced as a result of mutability.
TOB-LIHO-006

❏ Produce verbose logs in tests, and review those logs regularly for changes to
identify unintended sources of non-determinism. TOB-LIHO-007

❏ Regularly run your tests with address sanitizer enabled. If a program is currently free
of memory leaks, doing this can help ensure memory leaks are not introduced.
TOB-LIHO-008

❏ As new components are added to the system, try to use the same pattern in their
construction. This will reduce cognitive load both on developers adding components to
the system and on users trying to understand the system. TOB-LIHO-009

❏ Consider switching to a more actively maintained cryptography library with better
guarantees, like RustCrypto/block-ciphers . TOB-LIHO-010

❏ If EIP-2335 is revised, implement the use of argon2id as a KDF within
eth2_keystore . This will provide better security to the derived keys. TOB-LIHO-011

❏ Implement any changes accepted to EIP-2333 to reduce the risk of a secret key
compromise. TOB-LIHO-012

❏ Think about further minimizing panic occurrences throughout the codebase. Also,
consider using no-panic to reduce the likelihood of a panic becoming reachable in future
revisions. TOB-LIHO-013

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 11

https://github.com/dtolnay/no-panic

/

❏ Give users the option of storing their credentials in an HSM (Hardware Security
Module) or password manager such as Vault . This will allow the wallet to offload
responsibility for sensitive material to a service designed to handle such information.
TOB-LIHO-014 and TOB-LIHO-015

❏ As new command line options are added to the system, ensure that they do not
involve sensitive information. Command line options are generally accessible to an
attacker and could reveal such information. TOB-LIHO-016

❏ Ensure unit tests are written for new functions as they are added to the codebase
to prevent them from introducing bugs. TOB-LIHO-017

❏ Consider adding the fuzz targets in Appendix D to the set of targets that you
regularly fuzz. This bug was found by fuzzing one of those targets, so regularly fuzzing
them could help identify similar bugs, especially as Lighthouse’s dependencies evolve.
TOB-LIHO-018

❏ Adhere to the specification unless there is a good reason not to do so. This will help
Lighthouse avoid problems already anticipated by the specification’s authors.
TOB-LIHO-019

❏ If changes are made to any of these parameters, change both the implementation
and specification simultaneously so they maintain parity as they each evolve.
TOB-LIHO-020

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 12

https://www.vaultproject.io/

/

Findings Summary

Title Type Severity

1 Codebase uses a crate with a RUSTSEC
advisory

Patching Medium

2 Build process relies on outdated
dependencies

Patching Informational

3 Assumptions about struct field
initialization order

Undefined
Behavior

Low

4 Comments suggest code and
documentation are out of date

Patching Informational

5 Downloaded deposit contract is not
validated with a checksum

Data Validation Informational

6 BeaconState objects are mutated upon
error

Error Reporting Informational

7 Errors produced by
“ ParallelValidatorTreeHash::leaves ”
are non-deterministic

Error Reporting Informational

8 Memory leak due to non-graceful
shutdown

Denial of
Service

Low

9 Builder pattern is not strictly adhered to Patching Informational

10 rust-crypto is unmaintained and a
better alternative should be used

Cryptography Informational

11 Consider using argon2id as a KDF Cryptography Informational

12 Bias in BLS secret key generation Cryptography Low

13 Unnecessary use of panicking functions Denial of
Service

Informational

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 13

/

14 Password to validator private key is
stored in plaintext

Data Exposure High

15 Password to wallet is stored in plaintext Data Exposure High

16 Secret key passed as CLI argument Data Exposure High

17 Insufficient network layer unit tests Error Reporting Informational

18 Memory exhaustion via Multiaddr
deserialization

Denial of
Service

Low

19 SSZ snappy decoder reads more data
than specification recommends

Denial of
Service

Informational

20 Gossipsub parameters deviate from the
specification

Configuration Informational

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 14

/

1. Codebase uses a crate with a RUSTSEC advisory
Severity: Medium Difficulty: Undetermined
Type: Patching Finding ID: TOB-LIHO-001
Target: rusqlite 0.22.0

Description
The Lighthouse repository makes use of a crate with a Rust Security (RUSTSEC) advisory.
Specifically, the crate rusqlite 0.22.0 contains vulnerabilities that could lead to memory
corruption.

The rusqlite 0.23.0 release states:

The release primarily contains a number of security/memory safety
fixes...[that] mostly impact APIs exposed through features , so while there
are a lot of them, if you're using rusqlite under default features, you're fine.

Note that the consensus/types and validator_client/slashing_protection crates use
the “ bundled ” feature, and the r2d2_sqlite crate uses the “ trace ” feature.

In addition to the vulnerabilities mentioned above, cargo-audit produces five warnings.
Several of them concern crates that are no longer maintained.

Exploit Scenario
Eve discovers a code path leading to the vulnerable crate. Eve uses this code path to crash
nodes, corrupt memory, etc.

Recommendations
Short term, upgrade rusqlite from 0.22.0 to 0.23.1 . Patch crate r2d2_sqlite to use
rusqlite 0.23.1 , and use the patched version. These steps will eliminate potential
memory corruption vulnerabilities.

Long term, regularly run cargo-audit over the codebase to help reveal similar bugs.

References

● RUSTSEC-2020-0014: rusqlite : Various memory safety issues
● Release rusqlite 0.23.0 , libsqlite-sys 0.18.0
● cargo-audit

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 15

https://rustsec.org/advisories/RUSTSEC-2020-0014
https://rustsec.org/advisories/RUSTSEC-2020-0014
https://rustsec.org/advisories/RUSTSEC-2020-0014
https://github.com/rusqlite/rusqlite/releases/tag/0.23.0
https://github.com/rusqlite/rusqlite/releases/tag/0.23.0
https://github.com/rusqlite/rusqlite/releases/tag/0.23.0
https://github.com/rusqlite/rusqlite/releases/tag/0.23.0
https://github.com/RustSec/cargo-audit

/

2. Build process relies on outdated dependencies
Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-LIHO-002
Target: Cargo.toml , Cargo.lock

Description
Updated versions of many of Lighouse’s dependencies are available. Since silent bug fixes
are common, the dependencies should be reviewed and updated wherever possible.

Note that the project does not build with the latest commit of the web3 dependency.
However, the commit currently used is not specified in the Cargo.toml file. This makes the
Cargo.lock file necessary to build the project. Reliance on the Cargo.lock file should be
avoided, if possible.

To be clear, we are not suggesting that you abandon use of the Cargo.lock file, only that it
should not be relied upon.

Exploit Scenario

Dependency Version currently in use Latest version available

db-key 0.0.5 0.1.0

enr 0.1.0-alpha.7 0.1.0

hex 0.3.2 0.4.2

libp2p 0.18.1 0.19.0

libp2p-tcp 0.18.0 0.19.0

lru 0.4.3 0.4.4

miow 0.3.3 0.3.4

parking_lot 0.9.0 0.10.2

prometheus 0.8.0 0.9.0

rusqlite (TOB-LIHO-001) 0.22.0 0.23.1

syn 1.0.22 1.0.23

web3 (see below) b6c81f97 a3e5a53

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 16

/

Eve learns of an exploitable vulnerability in an old version of a dependency. Eve forks the
Lighthouse repository and modifies the code in a way that looks benign, but actually
exploits the machines of the developers who download and build the fork.

Recommendations
Short term, update dependencies to the latest version wherever possible. Using out-of-
date dependencies could mean critical bug fixes are missed.

Long term, regularly run cargo-upgrades and cargo update --dry-run over the codebase
to ensure that the project stays up to date with its dependencies.

References

● cargo-upgrades
● cargo update

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 17

https://crates.io/crates/cargo-upgrades
https://doc.rust-lang.org/cargo/commands/cargo-update.html

/

3. Assumptions about struct field initialization order
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-LIHO-003
Target: consensus/ssz_derive/src/lib.rs

Description
The implementation of the Decode macro makes assumptions about the order in which
struct fields are initialized. Such assumptions are not part of the Rust specification and
could break on certain platforms or in newer versions of the Rust compiler.

The relevant portions of the Decode macro appear in Figures 3.1 and 3.2. Note the use of
the local variables start and end in Figure 3.2.

Figure 3.1: consensus/ssz_derive/src/lib.rs#L209-L211 .

Figure 3.2: consensus/ssz_derive/src/lib.rs#L259-L276 .

Sample output of the Decode macro appears in Figure 3.3. Again, note the use of the local
variables start and end .

 fixed_decodes. push (quote! {

 #ident: decode_field! (#ty)

 });

 macro_rules! decode_field {

 ($type: ty) => {{

 start = end;

 end += < $ type as ssz::Decode>::ssz_fixed_len();

 let slice = bytes. get (start..end)

 . ok_or_else (|| ssz :: DecodeError :: InvalidByteLength {

 len: bytes. len (),

 expected: end

 })?;

 < $ type as ssz::Decode>::from_ssz_bytes(slice)?

 }};

 }

 Ok (Self {

 #(

 #fixed_decodes,

) *

 })

 Ok(Self {

 backing: {

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 18

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/ssz_derive/src/lib.rs#L209-L211
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/ssz_derive/src/lib.rs#L259-L276

/

Figure 3.3: The result of applying the Decode macro to struct CacheArena .
(Produced using cargo-expand .)

A closely related problem occurs with respect to error production. Consider the code in
Figure 3.4. The initializers for both proposer_index and attestations could generate
errors. An error that is produced depends upon the order in which those fields are
initialized. (See also TOB-LIHO-007 .)

 start = end;

 end += <Vec<T> as ssz::Decode>::ssz_fixed_len();

 let slice = bytes.get(start..end).ok_or_else(|| {

 ssz::DecodeError::InvalidByteLength {

 len: bytes.len(),

 expected: end,

 }

 })?;

 <Vec<T> as ssz::Decode>::from_ssz_bytes(slice)?

 },

 offsets: {

 start = end;

 end += <Vec<usize> as ssz::Decode>::ssz_fixed_len();

 let slice = bytes.get(start..end).ok_or_else(|| {

 ssz::DecodeError::InvalidByteLength {

 len: bytes.len(),

 expected: end,

 }

 })?;

 <Vec<usize> as ssz::Decode>::from_ssz_bytes(slice)?

 },

 })

 let mut block = SignedBeaconBlock {

 message: BeaconBlock {

 slot: state.slot,

 proposer_index: state. get_beacon_proposer_index (state.slot, & self .spec)? as

u64 ,

 parent_root,

 state_root: Hash256 :: zero (),

 body: BeaconBlockBody {

 randao_reveal,

 eth1_data,

 graffiti,

 proposer_slashings: proposer_slashings. into (),

 attester_slashings: attester_slashings. into (),

 attestations: self

 .op_pool

 . get_attestations (& state, attestation_filter, & self .spec)

 . map_err (BlockProductionError :: OpPoolError)?

 . into (),

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 19

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/cached_tree_hash/src/cache_arena.rs#L23-L28
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/cached_tree_hash/src/cache_arena.rs#L23-L28

/

Figure 3.4: beacon_node/beacon_chain/src/beacon_chain.rs#L1639-L1662 .

Exploit Scenario
A future version of the Rust compiler initializes fields in an order that is not their lexical
order. Lighthouse clients built with this version of the Rust compiler are unable to
interoperate with other nodes.

Recommendations
Short term, adjust the Decode macro so that decoding completes prior to struct
initialization. Doing so will eliminate potential undefined behavior.

Long term, regularly run cargo-clippy over the codebase to help reveal similar bugs.

References

● cargo-expand

 deposits,

 voluntary_exits: self .op_pool. get_voluntary_exits (& state,

& self .spec). into (),

 },

 },

 // The block is not signed here, that is the task of a validator client.

 signature: Signature :: empty_signature (),

 };

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 20

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/beacon_chain/src/beacon_chain.rs#L1639-L1662
https://github.com/dtolnay/cargo-expand

/

4. Comments suggest code and documentation are out of date
Severity: Informational Difficulty: Not applicable
Type: Patching Finding ID: TOB-LIHO-004
Target: Various

Description
In several places, comments suggest that the code and/or documentation need to be
updated. Legacy code is not just a maintenance burden, it also risks being used when it
should not be. Out-of-date documentation makes navigating the code more difficult and
discourages new developers.

Examples of comments suggesting deprecation appear in Figures 4.1–4.3.

Figure 4.1: beacon_node/beacon_chain/src/attestation_verification.rs#L554-L561 .
Issue 1636 on eth2.0-specs is closed.

Figure 4.2:
beacon_node/beacon_chain/src/block_verification/block_processing_outcome.rs#L

5-L9 .
The code has been merged into master.

Figure 4.3: validator_client/README.md#L1-L4 .
The validator client resides within the same binary as, e.g., the account_manager , whose

README features a similar message.

 // TODO: currently we do not check the FFG source/target. This is what the spec

dictates

 // but it seems wrong.

 //

 // I have opened an issue on the specs repo for this:

 //

 // https://github.com/ethereum/eth2.0-specs/issues/1636

 //

 // We should revisit this code once that issue has been resolved.

/// This is a legacy object that is being kept around to reduce merge conflicts.

///

/// TODO: As soon as this is merged into master, it should be removed as soon as possible.

#[derive(Debug, PartialEq)]

pub enum BlockProcessingOutcome {

Lighthouse Validator Client

The Validator Client (VC) is a stand-alone binary which connects to a Beacon

Node (BN) and fulfils the roles of a validator.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 21

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/beacon_chain/src/attestation_verification.rs#L554-L561
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/beacon_chain/src/block_verification/block_processing_outcome.rs#L5-L9
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/beacon_chain/src/block_verification/block_processing_outcome.rs#L5-L9
https://github.com/sigp/lighthouse/blame/ddd63c0de146133ce7877bee218710a2b41defd8/validator_client/README.md#L1-L4

/

Exploit Scenario
A block validation function is updated to protect against a new bug class discovered
post-deployment. However, code using the legacy version of that function remains
vulnerable, and is exploited.

Recommendations
Short term, remove all legacy code from the codebase before considering the code
production-ready, and ensure that documentation is up to date and accurate. These steps
will reduce the risk of using legacy code improperly, and will facilitate onboarding of new
developers.

Long term, ensure that deprecated code is tracked in an issue-tracking system so it’s not
used in production.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 22

/

5. Downloaded deposit contract is not validated with a checksum
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-LIHO-005
Target: common/deposit_contract/build.rs

Description
ABI and bytecode for the deposit contract are downloaded from the
ethereum/eth2.0-specs GitHub repository. While the request is called over https, the file
is not verified with a checksum. There is a small risk of the file being overwritten, allowing
an adversary to swap the deposit contract to a rogue one.

Exploit Scenario
Eve gains push permission to the ethereum/eth2.0-specs GitHub repository. She swaps
the deposit contract to a rogue one, which might lead to node malfunctioning and could
risk a slashing penalty.

Recommendations
Short term, add a sha256 checksum to the build code and validate the downloaded file with
it. Doing so will reduce the risk of an attacker gaining control of this file.

Long term, validate all important files downloaded from the Internet with a checksum. This
will help ensure that the application functions correctly following an unexpected content
change, be it malicious or otherwise.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 23

/

6. BeaconState objects are mutated upon error
Severity: Informational Difficulty: Undetermined
Type: Error Reporting Finding ID: TOB-LIHO-006
Target: consensus/state_processing/src/per_block_processing.rs

Description
The functions process_block_header , process_proposer_slashings , and process_exits
each take a reference to a mutable BeaconState object as their first argument. The
argument is mutated even when an error occurs in those functions. Such a practice is
error-prone and could have unintentional, lasting effects on the program’s state.

The relevant code from process_block_header appears in Figures 6.1 and 6.2. The
function sets the state’s latest_block_header field (Figure 6.1). That change persists even
if, for instance, an error occurs within the verify! macro (Figure 6.2).

Figure 6.1: consensus/state_processing/src/per_block_processing.rs#L180-L187 .

Figure 6.2: consensus/state_processing/src/macros.rs#L1-L7 .

A similar phenomenon exists with regard to SszDecoder::decode_next . Specifically, the
function removes the next item even when it cannot be decoded. However, such behavior
may be intentional.

Figure 6.3: consensus/ssz/src/decode.rs#L274-L276 .

 state.latest_block_header = block. temporary_block_header ();

 // Verify proposer is not slashed

 let proposer = & state.validators[proposer_index];

 verify! (

 ! proposer.slashed,

 HeaderInvalid :: ProposerSlashed (proposer_index)

);

macro_rules! verify {

 ($condition: expr, $result: expr) => {

 if ! $condition {

 return

Err (crate:: per_block_processing :: errors :: BlockOperationError :: invalid ($result));

 }

 };

}

 pub fn decode_next <T: Decode>(&mut self) -> Result <T, DecodeError> {

 T :: from_ssz_bytes (self .items. remove (0))

 }

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 24

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/state_processing/src/per_block_processing.rs#L180-L187
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/state_processing/src/macros.rs#L1-L7
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/ssz/src/decode.rs#L274-L276

/

Exploit Scenario
An error occurs during normal operation of Alice’s Lighthouse node. The error has an
unintentional, lasting effect on the program’s state, and Alice is no longer able to sync with
the network.

Recommendations
Short term, adjust the implementation of process_block_header ,
process_proposer_slashings , and process_exits so they do not modify the state
argument upon error. This will reduce the likelihood of an error having an unintentional,
lasting effect on the program’s state.

Long term, use mutability only where absolutely necessary, and regularly scrutinize those
uses to help ensure that bugs are not introduced as a result of mutability.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 25

/

7. Errors produced by “ ParallelValidatorTreeHash::leaves ” are
non-deterministic
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-LIHO-007
Target: consensus/types/src/beacon_state/tree_hash_cache.rs

Description
The function ParallelValidatorTreeHash::leaves can produce different errors when
given the same inputs. Thus, some errors could be suppressed by less severe ones.

Specifically, leaves uses ParallelIterator::collect to prepare its return value. A section
of collect ’s documentation appears in Figure 7.1.

Figure 7.1: src/result.rs#L90-L92 .

Multiple types of errors can be generated in leaves , e.g., TreeHashCacheInconsistent and
CachedTreeHashError(...) . If more than one error is generated, there is no guarantee as
to which will be returned.

Figure 7.2: consensus/types/src/beacon_state/tree_hash_cache.rs#L295-L315 .

/// If any item is ̀Err`, then all previous ̀Ok` items collected are

/// discarded, and it returns that error. If there are multiple errors, the

/// one returned is not deterministic.

 self .arenas

 . par_iter_mut ()

 . enumerate ()

 . map (| (arena_index, (arena, caches)) | {

 caches

 . iter_mut ()

 . enumerate ()

 . map (move | (cache_index, cache) | {

 let val_index = (arena_index * VALIDATORS_PER_ARENA) + cache_index;

 let validator = validators

 . get (val_index)

 . ok_or_else (|| Error :: TreeHashCacheInconsistent)?;

 validator

 . recalculate_tree_hash_root (arena, cache)

 . map_err (Error :: CachedTreeHashError)

 })

 . collect ()

 })

 . collect ()

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 26

https://github.com/rayon-rs/rayon/blob/7ffaf3463be2339cb5bad86dc87b602ed067fc7c/src/result.rs#L90-L92
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/types/src/beacon_state/tree_hash_cache.rs#L295-L315

/

Note: We have not observed non-deterministic error production experimentally. However,
the possibility of non-deterministic behavior is likely worth addressing.

Exploit Scenario
Alice runs a Lighthouse node and dismisses its error reports because they seem
insignificant. In reality, the reports conceal more severe errors.

Recommendations
Short term, add an error type to represent multiple errors, and adjust the implementation
of leaves so that it returns an instance of this “multiple error” error type. Eliminating the
use of ParallelIterator::collect will help ensure that errors are not suppressed and
that valuable system information is not lost.

Long term, produce verbose logs in tests, and review those logs regularly for changes to
identify unintended sources of non-determinism.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 27

/

8. Memory leak due to non-graceful shutdown
Severity: Low Difficulty: Undetermined
Type: Denial of Service Finding ID: TOB-LIHO-008
Target: Various

Description
Lighthouse nodes fail to clean up memory prior to shutdown. Such behavior could conceal
more severe memory leaks and lead to resource exhaustion.

A comment in the definition of the Client struct suggests that all services are expected to
shut down gracefully (see Figure 8.1).

Figure 8.1: beacon_node/client/src/lib.rs#L28-L29 .

However, the claim does not appear to hold. Specifically, running the
http_server_genesis_state test with address sanitizer enabled (Figure 8.2) produces
multiple memory leak errors.

Figure 8.2: Command to run the http_server_genesis_state test with address sanitizer
enabled.

While the specifics vary, the majority of the errors mention the tokio asynchronous IO
framework.

In our experiments, the memory leak errors went away when we re-implemented the
shutdown by:

● Having the tokio tasks listen on their respective exit channels, and exit upon receipt

of a message.
● Storing the JoinHandles produced by tokio::spawn in the Client .
● Implementing the Drop trait for the Client so it sends on each exit channel and

waits on each JoinHandle .

Exploit Scenario
Alice is a Lighthouse developer, and runs the tests with address sanitizer enabled. Alice
dismisses the memory leak reports, believing they concern only node shutdown. However,

 /// Exit channels will complete/error when dropped, causing each service to exit

gracefully.

 _exit_channels: Vec< tokio :: sync :: oneshot :: Sender < () >> ,

RUSTFLAGS='-Z sanitizer=address' cargo +nightly test --target

x86_64-unknown-linux-gnu http_server_genesis_state

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 28

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/client/src/lib.rs#L28-L29

/

more severe reports that she does not notice “hide in the noise.” The memory leak leads to
wide scale disruption of Lighthouse nodes.

Recommendations
Short term, re-implement the shutdown as described above to eliminate memory leaks.

Long term, regularly run your tests with address sanitizer enabled. If a program is currently
free of memory leaks, doing this can help ensure memory leaks are not introduced.

References

● The Rust Programming Language: Graceful Shutdown and Cleanup (which does not
use tokio , but is a useful reference, nonetheless)

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 29

https://doc.rust-lang.org/book/ch20-03-graceful-shutdown-and-cleanup.html

/

9. Builder pattern is not strictly adhered to
Severity: Informational Difficulty: Not applicable
Type: Patching Finding ID: TOB-LIHO-009
Target: Various

Description
Lighthouse node components are constructed using a mix of different software patterns.
The mixed style creates unnecessary complexity and makes the code more difficult to
understand.

Consider the construction of ProductionBeaconNode , which inherits from
ProductionClient . A ProductionBeaconNode is constructed by calling its new function,
which takes a client_config parameter. Members of the client_config are passed to a
builder to construct the ProductionClient (see Figure 9.1).

Figure 9.1: beacon_node/src/lib.rs#L69-L87 .

GeeksforGeeks lists the following as an advantage of the builder pattern:

The parameters to the constructor are reduced and are provided in highly
readable method calls.

Using a client_config parameter nullifies this advantage, since each element of the
client_config must be used in order to have an effect. Using the client_config better
resembles what Jacob Kiesel calls the "Init Struct Pattern."

 pub async fn new (

 context: RuntimeContext<E>,

 mut client_config: ClientConfig,

) -> Result < Self , String > {

 let http_eth2_config = context. eth2_config (). clone ();

 let spec = context. eth2_config ().spec. clone ();

 let client_config_1 = client_config. clone ();

 let client_genesis = client_config.genesis. clone ();

 let store_config = client_config.store. clone ();

 let log = context.log. clone ();

 let db_path = client_config. create_db_path ()?;

 let freezer_db_path_res = client_config. create_freezer_db_path ();

 let builder = ClientBuilder :: new (context.eth_spec_instance. clone ())

 . runtime_context (context)

 . chain_spec (spec)

 . disk_store (& db_path, & freezer_db_path_res?, store_config)?

 . background_migrator ()?;

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 30

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/src/lib.rs#L69-L87

/

A secondary problem concerns side effects. For a ProductionClient , many such side
effects occur prior to the call of its builder’s build function (see Figure 9.2). Such an
approach deviates from the Rust style guide on how to apply the builder pattern.

Figure 9.2: beacon_node/client/src/builder.rs#L214-L215 .

Exploit Scenario
Alice, a new Lighthouse developer, adds a component to the system. Confused by the mix
of styles used to construct objects, Alice introduces a bug into the system.

Recommendations
Short term, adopt one pattern, be it the “Builder Pattern,” the “Init Struct Pattern,” or
something else, and try to adhere to it. This will make your code easier to read,
understand, and reason about.

Long term, as new components are added to the system, try to use the same pattern in
their construction. This will reduce cognitive load both on developers adding components
to the system and on users trying to understand the system.

References

● GeeksforGeeks: Builder Design Pattern
● X Blog: Init Struct Pattern
● Learn Rust: The builder pattern

 /// Immediately starts the networking stack.

 pub fn network (mut self , config: & NetworkConfig) -> Result < Self , String > {

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 31

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/client/src/builder.rs#L214-L215
https://www.geeksforgeeks.org/builder-design-pattern/
https://xaeroxe.github.io/init-struct-pattern/
https://doc.rust-lang.org/1.0.0/style/ownership/builders.html

/

10. rust-crypto is unmaintained and a better alternative should be used
Severity: Informational Difficulty: Not applicable
Type: Cryptography Finding ID: TOB-LIHO-010
Target: eth2_keystore , eth2_wallet

Description
The eth2_keystore module and consequently the eth2_wallet module depend on
rust-crypto for their aes-128-ctr keystream. In using this keystream, we found a variety
of bugs that result in footguns which Lighthouse currently avoids in these modules.
Specifically, an unchecked counter leads to undefined behavior.

On x86 or x86_64 targets, rust-crypto attempts to use its optimized AESNI
implementation instead of the general software implementation. This just converts the
input IV array to a vector and constructs the implementation . The implementation itself is
quite dumb and maintains a copy of this vector as the counter. This counter is incremented
via the add_ctr function, which starts at the last byte of the vector, adds 1 to it, and
performs carry operations as necessary until it passes the first byte of the vector. Since the
beginning of the counter vector is passed to the encrypt function, counters do not
increment correctly when their vector length is greater than 16, and counters will cycle too
early if their vector length is less than 16, e.g., [255] -> [0] instead of [0, ..., 255] ->
[0, ..., 1, 0] .

Because the start of the counter is passed to the encrypt function, which expects a full
block of 16 bytes, there is the issue of uninitialized memory. The underlying encrypt
function just performs the encryption, no questions asked, and the buffers are passed
verbatim , leading to undefined behavior from the uninitialized memory when the IV length
is less than 16.

The Lighthouse code currently sets the length to 16 in the keystore and wallet, which
avoids all these dangerous code paths, but we are including this notice to warn the
developers.

Exploit Scenario
An unwary developer changes the IV length in a fork or a future commit, thereby reducing
the security of the encrypted keystore and leaking information about their secret key or
rendering their secret key unrecoverable due to undefined behavior.

Recommendations
Short term, ensure that nobody ever touches the IV length. Setting the IV length to anything
other than 16 could introduce undefined behavior.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 32

https://docs.rs/rust-crypto/0.2.36/src/crypto/aes.rs.html#260
https://github.com/DaGenix/rust-crypto/blob/master/src/blockmodes.rs#L687
https://github.com/DaGenix/rust-crypto/blob/master/src/blockmodes.rs#L702
https://github.com/DaGenix/rust-crypto/blob/master/src/aesni_helpers.c#L278
https://github.com/DaGenix/rust-crypto/blob/master/src/aesni_helpers.c#L278
https://github.com/DaGenix/rust-crypto/blob/master/src/aesni.rs#L77
https://github.com/DaGenix/rust-crypto/blob/master/src/aesni.rs#L161

/

Long term, consider switching to a more actively maintained cryptography library with
better guarantees, like RustCrypto/block-ciphers .

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 33

https://github.com/RustCrypto/block-ciphers

/

11. Consider using argon2id as a KDF
Severity: Informational Difficulty: Not applicable
Type: Cryptography Finding ID: TOB-LIHO-011
Target: eth2_keystore , eth2_wallet , EIP-2335

Description
EIP-2335 is currently in the draft phase and supports two KDFs: PBKDF2 and scrypt.
PBKDF2 has been around for a long time, and its iterations can be adjusted so that it will
have an arbitrarily large computation time. However, its computation requires very little
RAM, which makes it susceptible to brute-force attacks from dedicated hardware like GPUs
and ASICs.

Scrypt was designed to require large amounts of memory and mitigate attacks from
dedicated hardware, which makes it a much stronger choice than PBKDF2. However,
scrypt’s data-dependent memory accesses can be susceptible to side-channel attacks.

Therefore, we feel that argon2id is a much better alternative as it offers protections
against both side channels and dedicated hardware. This stackexchange answer provides
excellent insight as to why, and this one explains the parameters nicely. Also, argon2 was
the winner of the 2015 Password Hashing Competition.

Recommendations
Short term, consider revising EIP-2335 to include argon2id as a possible KDF. As argued,
argon2id is a better choice than scrypt or PBKDF2. Incorporating argon2id into EIP-2335
will provide better security to the community as a whole.

Long term, if EIP-2335 is revised, implement the use of argon2id as a KDF within
eth2_keystore . This will provide better security to the derived keys.

References

● Open Sesame: The Password Hashing Competition and Argon2

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 34

https://security.stackexchange.com/a/197550
https://crypto.stackexchange.com/questions/48954/questions-about-the-argon2-options#answer-53319
https://eprint.iacr.org/2016/104.pdf

/

12. Bias in BLS secret key generation
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-LIHO-012
Target: eth2_key_derivation , EIP-2333

Description
BLS secret keys need to be generated uniformly randomly to be secure. Currently, BLS
secret keys are generated by computing an HKDF over a seed (an array of bytes) and then
reducing the result modulo the group order. However, generating keys in this manner is
not uniform; specifically, smaller secret keys will be generated more often. To see this more
easily, consider the possible results of taking a 3-bit integer modulo 3. 0 occurs 3 times (0,
3, 6), while 2 only occurs 2 times (2, 5).

In general, the security of the BLS signature scheme is proven under the assumption that
secret keys are generated uniformly randomly. Therefore, we cannot make any of the same
security guarantees if keys are not generated properly. In addition, slight bias has a history
of dramatically reducing the security bounds of any cryptosystem.

Recommendations
Short term, since adjusting the EIP will provide better security to the community as a
whole, consider revising EIP-2333 so that the mod_r operation becomes uniformly
distributed, or can fail. The latter is easily implemented by requiring the number to lie
within a range that is uniformly distributed after a mod_r operation. For instance, with 3-bit
integers mod 3, we only accept HKDF results that lie in the range 0-5, as 6 and 7 do not
cover the full range of 0, 1, 2. For these results, we can error out or just take bits 2-4
instead of 1-3, and keep going until we get something usable.

Long term, implement any changes accepted to EIP-2333 to reduce the risk of a secret key
compromise.

References

● LadderLeak: Breaking ECDSA With Less Than One Bit Of Nonce Leakage

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 35

https://eprint.iacr.org/2020/615

/

13. Unnecessary use of panicking functions
Severity: Informational Difficulty: Not applicable
Type: Denial of Service Finding ID: TOB-LIHO-013
Target: beacon_node/beacon_chain/src/beacon_chain.rs ,
beacon_node/network/src/sync/manager.rs

Description
There are a few places in the codebase that use functions such as panic! , expect , or
unwrap . When executed, these functions will likely cause the program to terminate.
Currently, the way they are used is not dangerous: The preconditions are met, so
termination doesn’t occur. In some places, the code can be rewritten in such a way that the
functions are not required—see the examples in Figures 13.1 and 13.2.

Figure 13.1: beacon_node/beacon_chain/src/beacon_chain.rs#L1231-L1238 .

Figure 13.2: Code from Figure 13.1 rewritten without expect() .

A similar example concerns the process_parent_request function in
beacon_node/network/src/sync/manager.rs .

Exploit Scenario
A Lighthouse developer moves code calling the expect function without taking
preconditions into account, potentially forcing a node to crash.

Recommendations

while ! filtered_chain_segment. is_empty () {

 // Determine the epoch of the first block in the remaining segment.

 let start_epoch = filtered_chain_segment

 . first ()

 . map (| (_root, block) | block)

 . expect ("chain_segment cannot be empty")

 . slot ()

 . epoch (T :: EthSpec :: slots_per_epoch ());

 ...

}

while let Some ((_root, block)) = filtered_chain_segment. first () {

 // Determine the epoch of the first block in the remaining segment.

 let start_epoch = block

 . slot ()

 . epoch (T :: EthSpec :: slots_per_epoch ());

 ...

}

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 36

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/beacon_chain/src/beacon_chain.rs#L1231-L1238
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/network/src/sync/manager.rs#L593-L641

/

Short term, change the code to eliminate panics in the indicated places. This will eliminate
a potential denial-of-service vector.

Long term, think about further minimizing panic occurrences throughout the codebase.
Also, consider using no-panic to reduce the likelihood of a panic becoming reachable in
future revisions.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 37

https://github.com/dtolnay/no-panic

/

14. Password to validator private key is stored in plaintext
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-LIHO-014
Target: Validator

Description
Validator private keys are stored on disk and encrypted symmetrically with AES. The AES
key is also stored on disk in a separate directory in plaintext. The encryption provides little
security since the decryption key can be found just in a separate directory. By default, the
directory for storing the decryption keys is ~/.lighthouse/secrets and has to be
manually created by the user before running Lighthouse. Leaning on the user to make sure
the directory permissions are set correctly can weaken security further.

Exploit Scenario
An attacker gains access to the filesystem of a machine running Lighthouse and is able to
steal all validator private keys.

Recommendations
Short term, encrypt the validator key with a password and require the user to enter the
password on Lighthouse startup. This will eliminate the need to store sensitive information
in plaintext on the filesystem.

Long term, give users the option of storing their credentials in an HSM (Hardware Security
Module) or password manager such as Vault . This will allow the wallet to offload
responsibility for sensitive material to a service designed to handle such information.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 38

https://www.vaultproject.io/

/

15. Password to wallet is stored in plaintext
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-LIHO-015
Target: Lighthouse wallet

Description
Creating a wallet requires a password file (Figure 14.1). Because the password is needed
later to create validator key pairs, it is impossible to create a wallet without storing the
password in file.

Figure 14.1: A passphrase file is required for a wallet to be created.

Exploit Scenario
An attacker gains access to the filesystem of a machine running Lighthouse and is able to
steal the wallet.

Recommendations
Short term, require the user to enter the wallet password on Lighthouse startup. This will
eliminate the need to store sensitive information in plaintext on the filesystem.

Long term, give users the option of storing their credentials in an HSM (Hardware Security
Module) or password manager such as Vault . This will allow the wallet to offload
responsibility for sensitive material to a service designed to handle such information.

$ lighthouse account wallet create --name foo

error: The following required arguments were not provided:

 --passphrase-file <WALLET_PASSWORD_PATH>

...

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 39

https://www.vaultproject.io/

/

16. Secret key passed as CLI argument
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-LIHO-016
Target: beacon node

Description
Beacon node allows a secret key to be passed as a CLI argument to the process. It is not
recommended to pass sensitive information through a command line since it can be easily
leaked to other users of the system. Reporting frameworks might also capture and export
it to a remote location. Additionally, a whole command along with the secret might be
saved in shell history. The relevant switch is presented in Figure 16.1.

Figure 16.1: Passing a secret through the command line.

Exploit Scenario
An attacker gains access to a machine running Lighthouse and is able to read the
p2p-priv-key through cat /proc/PID/cmdline .

Recommendations
Short term, remove the option to pass p2p-priv-key from the command line. Passing this
option on the command line makes it accessible to an attacker.

Long term, as new command line options are added to the system, ensure that they do not
involve sensitive information. Command line options are generally accessible to an attacker
and could reveal such information.

$ lighthouse beacon_node --help

...

--p2p-priv-key <HEX>

 A secp256k1 secret key, represented as ASCII-encoded hex bytes (with or

without 0x prefix). Default is

 either loaded from disk or generated automatically.

...

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 40

/

17. Insu�ficient network layer unit tests
Severity: Informational Difficulty: Undetermined
Type: Error Reporting Finding ID: TOB-LIHO-017
Target: eth2_libp2p and network crates

Description
The eth2_lib2p2p and network could benefit from additional unit tests. For example,
many network crate functions are not currently exercised by any unit test (Tables 17.1 and
17.2).

Table 17.1: eth2_libp2p test code coverage as reported by grcov .

Table 17.2: network test code coverage as reported by grcov .

Unit tests help expose errors, provide a sort of documentation of the code, and can be
used to generate fuzzing corpora (see Appendix D). Moreover, unit tests exercise code in a
more systematic way than any human can, and thus help protect against regressions.

Directory Line Coverage Function Coverage

src 47.5 % 21.2 %

src/behaviour 65.5 % 56.4 %

src/behaviour/handler 51.3 % 54.2 %

src/discovery 40.3 % 25.0 %

src/peer_manager 64.1 % 47.4 %

src/rpc 64.2 % 25.0 %

src/rpc/codec 72.4 % 79.4 %

src/types 15.0 % 6.8 %

Directory Line Coverage Function Coverage

src 24.4 % 25.0 %

src/attestation_service 74.5 % 43.9 %

src/beacon_processor 0.0 % 0.0 %

src/sync 0.0 % 0.0 %

src/sync/range_sync 0.0 % 0.0 %

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 41

/

Exploit Scenario
Eve exploits a flaw in an eth2_libp2p or network crate function. The flaw would likely have
been revealed through unit tests.

Recommendations
Short term, add unit tests for eth2_libp2p and network crate functions not currently
exercised by unit tests. Ideally, there will be at least one test for each “ happy ” (successful)
path, and at least one test for each “sad” (failing) path. A comprehensive set of unit tests
will help expose errors, protect against regressions, and provide a sort of documentation
to users.

Long term, ensure unit tests are written for new functions as they are added to the
codebase to prevent them from introducing bugs.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 42

https://crmbusiness.wordpress.com/2015/04/29/developers-need-to-stop-being-so-happy/

/

18. Memory exhaustion via Multiaddr deserialization
Severity: Low Difficulty: High
Type: Denial of Service Finding ID: TOB-LIHO-018
Target: beacon_node/network/src/nat.rs ,
beacon_node/eth2_libp2p/src/peer_manager/client.rs

Description
When deserializing a Multiaddr , Lighthouse’s rust-libp2p dependency can allocate
vectors of arbitrary size. This behavior could be exploited for denial of service.

The vulnerable function is visit_seq in Figure 18.1. The function passes seq.size_hint()
(which can be arbitrarily large) to Vec::with_capacity . For comparison, serde ’s code for
deserializing a sequence appears in Figures 18.2 and 18.3. Note that serde ‘s
implementation limits the size of the vector to 4096.

Figure 18.1: rust-libp2p/misc/multiaddr/src/lib.rs#L335-L349 .

Figure 18.2: serde/src/de/impls.rs#L863-L867 .

Figure 18.3: serde/src/private/de.rs#L201-L204 .

impl < ' de > Deserialize < ' de > for Multiaddr {

 fn deserialize <D>(deserializer: D) -> StdResult< Self , D::Error>

 where

 D: Deserializer< ' de >,

 {

 struct Visitor { is_human_readable: bool };

 impl < ' de > de :: Visitor < ' de > for Visitor {

 type Value = Multiaddr;

 ...

 fn visit_seq <A: de::SeqAccess< ' de >>(self , mut seq: A) ->

StdResult< Self ::Value, A::Error> {

 let mut buf: Vec<u8> = Vec:: with_capacity (seq. size_hint (). unwrap_or (0));

 fn visit_seq <A>(self , mut seq: A) -> Result < Self ::Value, A::Error>

 where

 A: SeqAccess< ' de >,

 {

 let mut values = Vec:: with_capacity (size_hint :: cautious (seq. size_hint ()));

 #[inline]

 pub fn cautious (hint: Option < usize >) -> usize {

 cmp :: min (hint. unwrap_or (0), 4096)

 }

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 43

https://github.com/libp2p/rust-libp2p/blob/5a9f0819af3990cfefad528e957297af596399b4/misc/multiaddr/src/lib.rs#L335-L349
https://github.com/serde-rs/serde/blob/45c45e87bf38f2d5fbd01d04468666fce0b02562/serde/src/de/impls.rs#L863-L867
https://github.com/serde-rs/serde/blob/45c45e87bf38f2d5fbd01d04468666fce0b02562/serde/src/private/de.rs#L201-L204

/

This bug was found indirectly by fuzzing UPnPConfig ’s From trait implementations.
Specifically, NetworkConfig ’s deserialization code was used to prepare fuzzing inputs for:

fn from(config: &NetworkConfig) -> UPnPConfig

A stack trace appears in Figure 18.4.

Figure 18.4: Stack trace leading to the bug in Figure 18.1.

Note that IdentifyInfo (another rust-libp2p type used by Lighthouse) also uses
Multiaddr . If rust-libp2p were to derive the serde::Deserialize trait for that type, the
resulting code would be vulnerable as well.

Exploit Scenario
Eve convinces Alice to use her network configuration. Alice’s node crashes as a result. Alice
wastes time and effort trying to identify the cause of the crash.

Recommendations
Short term, patch the code in Figure 18.1 by limiting the size of the value passed to
Vec::with_capacity . Use the patched version of rust-libp2p until the bug is fixed
upstream. These steps will eliminate a potential denial-of-service attack.

#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50

#1 __GI_abort () at abort.c:79

#2 std::sys::unix::abort_internal () at library/std/src/sys/unix/mod.rs:231

#3 std::process::abort () at library/std/src/process.rs:1773

#4 std::alloc::rust_oom () at library/std/src/alloc.rs:331

#5 alloc::alloc::__default_lib_allocator::__rg_oom () at library/alloc/src/alloc.rs:389

#6 alloc::alloc::handle_alloc_error () at library/alloc/src/alloc.rs:343

#7 alloc::raw_vec::RawVec<T,A>::allocate_in ()

#8 <<parity_multiaddr::Multiaddr as serde::de::Deserialize>::deserialize::Visitor as

serde::de::Visitor>::visit_seq ()

#9 serde_cbor::de::Deserializer<R>::parse_array ()

#10 serde_cbor::de::Deserializer<R>::parse_value ()

#11 <parity_multiaddr::Multiaddr as serde::de::Deserialize>::deserialize ()

#12 <serde_cbor::de::SeqAccess<R> as serde::de::SeqAccess>::next_element_seed ()

#13 <serde::de::impls::<impl serde::de::Deserialize for

alloc::vec::Vec<T>>::deserialize::VecVisitor<T> as serde::de::Visitor>::visit_seq ()

#14 serde_cbor::de::Deserializer<R>::parse_array ()

#15 serde_cbor::de::Deserializer<R>::parse_value ()

#16 serde::de::impls::<impl serde::de::Deserialize for alloc::vec::Vec<T>>::deserialize ()

#17 serde_cbor::de::Deserializer<R>::parse_map ()

#18 serde_cbor::de::Deserializer<R>::parse_value ()

#19 eth2_libp2p::config::_::<impl serde::de::Deserialize for

eth2_libp2p::config::Config>::deserialize ()

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 44

/

Long term, consider adding the fuzz targets in Appendix D to the set of targets that you
regularly fuzz. This bug was found by fuzzing one of those targets, so regularly fuzzing
them could help to identify similar bugs, especially as Lighthouse’s dependencies evolve.

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 45

/

1 9. SSZ snappy decoder reads more data than specification recommends
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-LIHO-019
Target: beacon_node/eth2_libp2p/src/rpc/codec/ssz_snappy.rs

Description
The Ethereum 2.0 specification recommends an upper bound for the amount of
compressed data that a node should read when processing RPC messages. Lighthouse
deviates from the specification by checking whether the bound was exceeded after the data
has been read.

The passage in question is the following (SSZ-snappy encoding strategy):

A reader SHOULD NOT read more than max_encoded_len(n) bytes after
reading the SSZ length-prefix n from the header.

However, the Lighthouse implementation reads as much data as will fit in a provided
buffer, and checks after the fact whether the bound was exceeded (Figures 19.1 and 19.2).

Figure 19.1: beacon_node/eth2_libp2p/src/rpc/codec/ssz_snappy.rs#L113-L120 .

 // Should not attempt to decode rpc chunks with length > max_packet_size

 if length > self .max_packet_size {

 return Err (RPCError :: InvalidData);

 }

 let mut reader = FrameDecoder :: new (Cursor :: new (& src));

 let mut decoded_buffer = vec! [0 ; length];

 match read_exact (&mut reader, &mut decoded_buffer, length) {

fn read_exact <T: std::convert:: AsRef <[u8]>>(

 reader: &mut FrameDecoder<Cursor<T>>,

 mut buf: &mut [u8],

 uncompressed_length: usize ,

) -> Result <(), std::io::Error> {

 // Calculate worst case compression length for given uncompressed length

 let max_compressed_len = snap :: raw :: max_compress_len (uncompressed_length) as u64 ;

 // Initialize the position of the reader

 let mut pos = reader. get_ref (). position ();

 let mut count = 0 ;

 while ! buf. is_empty () {

 match reader. read (buf) {

 ...

 }

 // Get current position of reader

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 46

https://github.com/ethereum/eth2.0-specs/blob/v0.12.3/specs/phase0/p2p-interface.md#ssz-snappy-encoding-strategy
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/rpc/codec/ssz_snappy.rs#L113-L120

/

Figure 19.2: beacon_node/eth2_libp2p/src/rpc/codec/ssz_snappy.rs#L424-L466 .

Note that buf in Figure 19.2 is a buffer at most MAX_RPC_SIZE (2 10) bytes in size. Thus, it
appears that in the worst case, this deviation could cause a node to read about one
megabyte of traffic unnecessarily.

Exploit Scenario
Alice runs a Lighthouse node. Eve repeatedly sends Alice’s node traffic that does not
decompress correctly. This combined with other factors makes Alice’s node unable to keep
up with the network.

Recommendations
Short term, when reading SSZ encoded data, limit the size of the read buffer to
max_compressed_len . This will make a subsequent check against max_compressed_len
unnecessary and will bring Lighthouse more in line with the Ethereum 2.0 specification.

Long term, adhere to the specification unless there is a good reason not to do so. This will
help Lighthouse avoid problems already anticipated by the specification’s authors.

 let curr_pos = reader. get_ref (). position ();

 ...

 if curr_pos > pos {

 count += reader. get_ref (). position () - pos;

 pos = curr_pos;

 } else {

 ...

 }

 if count > max_compressed_len {

 return Err (std :: io :: Error :: new (

 ErrorKind :: InvalidData,

 "snappy: compressed data is > max_compressed_len" ,

));

 }

 }

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 47

https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/rpc/codec/ssz_snappy.rs#L424-L466

/

20. Gossipsub parameters deviate from the specification
Severity: Informational Difficulty: Not applicable
Type: Configuration Finding ID: TOB-LIHO-020
Target: beacon_node/eth2_libp2p/src/config.rs

Description
The Ethereum 2.0 networking specification states that clients must support the gossipsub
v1 libp2p protocol for broadcasting topics. gossipsub was proposed to improve on the
initial implementation, which used floodsub , a simple propagation strategy in which nodes
“flood” the network by broadcasting to every node they know about. This was problematic
because bandwidth costs were excessive for highly connected peers, decreasing scalability.

gossipsub was proposed to address the shortcomings of floodsub (as discussed in the
gossipsub specification) and constrain the outdegree of nodes in the network to achieve
better performance. The topology of this network is then determined by a series of
parameters that define, for example, the desired outbound degree and the maximum
outbound degree.

Among other parameters, the Ethereum 2.0 networking specification assigns values to D ,
D_low , and D_high , which respectively define the desired outbound degree, minimum
outbound degree, and maximum outbound degree for nodes in the network. Per the
specification:

D = 6
D_low = 5
D_high = 12

However, the implementation uses different values (see Figure 20.1). In particular, the
values for D and D_low are different in the implementation.

 // gossipsub configuration
 // Note: The topics by default are sent as plain strings. Hashes are an optional
 // parameter.
 let gs_config = GossipsubConfigBuilder :: new ()
 . max_transmit_size (GOSSIP_MAX_SIZE)
 . heartbeat_interval (Duration :: from_millis (700))
 . mesh_n (8)
 . mesh_n_low (6)
 . mesh_n_high (12)
 . gossip_lazy (6)
 . fanout_ttl (Duration :: from_secs (60))
 . history_length (6)
 . history_gossip (3)
 . validate_messages () // require validation before propagation
 . validation_mode (ValidationMode :: Anonymous)
 // prevent duplicates for 550 heartbeats(700millis * 550) = 385 secs

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 48

https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md#parameters
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md#parameters
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md#the-gossip-domain-gossipsub

/

Figure 20.1: beacon_node/eth2_libp2p/src/config.rs#L97-L116 .

Since these configuration parameters dictate the topology of the network, it is important to
determine the optimal parameters for the network and ensure these parameters are used
consistently across the network. Therefore, it is imperative that the implementation and
specification use the same parameters.

Recommendations
Short term, adjust either the implementation or the specification so that the parameter
choices match and desired network performance is achieved.

Long term, if changes are made to any of these parameters, change both the
implementation and specification simultaneously so they maintain parity as they each
evolve.

 . duplicate_cache_time (Duration :: from_secs (385))
 . message_id_fn (gossip_message_id)
 . build ()
 . expect ("valid gossipsub configuration");

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 49

https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/config.rs#L97-L116

/

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 50

/

implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 51

/

B. Non-Security-Related Findings
This appendix contains findings that do not have immediate or obvious security
implications.

● Keyword “ mut ” is used unnecessarily. Within the body of per_block_processing ,

the object referred to by state is mutated, but state itself is not. Thus, the uses of
“ mut ” in Figures B.1 and B.2 can be eliminated.

Figure B.1: consensus/state_processing/src/per_block_processing.rs#L80-L86 .

Figure B.2: consensus/state_processing/src/per_block_processing.rs#L118-L125 .

● Occurrences of the unwrap function. These can at least be changed to expect ,

stating the invariant that is assumed to be held, thereby providing better
documentation and crash messages.

Figure B.3: beacon_node/eth2-libp2p/src/peer_manager/peerdb.rs#L281-L288 .

pub fn per_block_processing <T: EthSpec>(

 mut state: &mut BeaconState<T>,

 signed_block: & SignedBeaconBlock<T>,

 block_root: Option <Hash256>,

 block_signature_strategy: BlockSignatureStrategy,

 spec: & ChainSpec,

) -> Result <(), BlockProcessingError> {

 process_randao (&mut state, & block, verify_signatures, & spec)?;

 process_eth1_data (&mut state, & block.body.eth1_data)?;

 process_proposer_slashings (

 &mut state,

 & block.body.proposer_slashings,

 verify_signatures,

 spec,

)?;

while self .n_dc > MAX_DC_PEERS {

 let to_drop = self

 .peers

 . iter ()

 . filter (| (_, info) | info.connection_status. is_disconnected ())

 . min_by_key (| (_, info) | info.reputation)

 . map (| (id, _) | id. clone ())

 . unwrap (); // should be safe since n_dc > MAX_DC_PEERS > 0

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 52

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/state_processing/src/per_block_processing.rs#L80-L86
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/consensus/state_processing/src/per_block_processing.rs#L118-L125
https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/beacon_node/eth2-libp2p/src/peer_manager/peerdb.rs#L281-L288

/

● The following code is unused:

Figure B.4: common/rest_types/src/validator.rs#L33-L50 .

● Behaviour field initialization does not match the order in which the fields are

declared (Figures B.5 and B.6). Consider making the fields’ declaration and
initialization orders consistent.

Figure B.5: beacon_node/eth2_libp2p/src/behaviour/mod.rs#L99-L103 .

Figure B.6: beacon_node/eth2_libp2p/src/behaviour/mod.rs#L159-L161 .

● Variables E , T , TSpec , and TEthSpec are used to represent structs that

implement the EthSpec trait. Examples:

○ eth2_libp2p/tests/common/mod.rs#L12 : type E = MinimalEthSpec;

impl <T> ValidatorDutyBase <T> {

 /// Given a ̀slot_signature` determines if the validator of this duty is an

aggregator.

 // Note that we assume the signature is for the associated pubkey to avoid the

signature

 // verification

 pub fn is_aggregator (& self , slot_signature: & Signature) -> bool {

 if let Some (modulo) = self .aggregator_modulo {

 let signature_hash = hash (& slot_signature. as_bytes ());

 let signature_hash_int = u64:: from_le_bytes (

 signature_hash[0 .. 8]

 . try_into ()

 . expect ("first 8 bytes of signature should always convert to fixed

array"),

);

 signature_hash_int % modulo == 0

 } else {

 false

 }

 }

}

pub struct Behaviour <TSpec: EthSpec> {

 /// The routing pub-sub mechanism for eth2.

 gossipsub: Gossipsub,

 /// The Eth2 RPC specified in the wire-0 protocol.

 eth2_rpc: RPC < TSpec > ,

Ok (Behaviour {

 eth2_rpc: RPC :: new (log. clone ()),

 gossipsub,

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 53

https://github.com/sigp/lighthouse/blob/ddd63c0de146133ce7877bee218710a2b41defd8/common/rest_types/src/validator.rs#L33-L50
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/behaviour/mod.rs#L99-L103
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/behaviour/mod.rs#L159-L161
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/tests/common/mod.rs#L12

/

○ eth2_libp2p/src/rpc/mod.rs#L41 : pub enum RPCSend <T: EthSpec> {
○ eth2_libp2p/src/behaviour/mod.rs#L48 : pub enum BehaviourEvent <TSpec:

EthSpec> {
○ beacon_chain/src/builder.rs#L77 : TEthSpec : EthSpec + ' static ,

Since E and T are rather generic, consider using TSpec or TEthSpec consistently.

● In From<u64> implementation for GoodbyeReason , the return type could be

changed to Self (Figure B.7).

Figure B.7: beacon_node/eth2_libp2p/src/rpc/methods.rs#L135-L136 .

● SyncInfo field names contain unnecessary prefixes (Figure B.8). Consider

eliminating the “ status_ ” prefixes.

Figure B.8: beacon_node/eth2_libp2p/src/peer_manager/peer_sync_status.rs#L22-L27 .

impl From < u64 > for GoodbyeReason {

 fn from (id: u64) -> GoodbyeReason {

pub struct SyncInfo {

 pub status_head_slot: Slot,

 pub status_head_root: Hash256,

 pub status_finalized_epoch: Epoch,

 pub status_finalized_root: Hash256,

}

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 54

https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/rpc/mod.rs#L41
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/behaviour/mod.rs#L48
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/beacon_chain/src/builder.rs#L77
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/rpc/methods.rs#L135-L136
https://github.com/sigp/lighthouse/blob/da44821e39018a7b480f6ab3ef398776e63446bb/beacon_node/eth2_libp2p/src/peer_manager/peer_sync_status.rs#L22-L27

/

C. Fix Log
On August 24 and December 14-18, 2020, Trail of Bits reviewed Sigma Prime’s fixes for the
issues identified in this report. The fixes were spread across the following 16 pull requests,
all of which were merged.

● https://github.com/sigp/lighthouse/pull/1181

● https://github.com/sigp/lighthouse/pull/1192

● https://github.com/sigp/lighthouse/pull/1195

● https://github.com/sigp/lighthouse/pull/1210

● https://github.com/sigp/lighthouse/pull/1227

● https://github.com/sigp/lighthouse/pull/1270

● https://github.com/sigp/lighthouse/pull/1277

● https://github.com/sigp/lighthouse/pull/1278

● https://github.com/sigp/lighthouse/pull/1322

● https://github.com/sigp/lighthouse/pull/1327

● https://github.com/sigp/lighthouse/pull/1330

● https://github.com/sigp/lighthouse/pull/1334

● https://github.com/sigp/lighthouse/pull/1738

● https://github.com/sigp/lighthouse/pull/1867

● https://github.com/libp2p/rust-libp2p/pull/1833

● https://github.com/ethereum/eth2.0-specs/pull/2121

Sigma Prime fixed or partially fixed 13 of the 20 findings identified in this report. We
reviewed the fixes to ensure that they would be effective. Of the remaining seven findings,
Sigma Prime chose to accept the risk associated with five of them, and has not yet fixed
two of them.

ID Title Severity Status

01 Codebase uses a crate with a RUSTSEC advisory Medium Fixed

02 Build process relies on outdated dependencies Informational Fixed

03 Assumptions about struct field initialization order Low Fixed

04 Comments suggest code and documentation are out
of date

Informational Fixed

05 Downloaded deposit contract is not validated with a
checksum

Informational Fixed

06 BeaconState objects are mutated upon error Informational Risk

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 55

https://github.com/sigp/lighthouse/pull/1181
https://github.com/sigp/lighthouse/pull/1192
https://github.com/sigp/lighthouse/pull/1195
https://github.com/sigp/lighthouse/pull/1210
https://github.com/sigp/lighthouse/pull/1227
https://github.com/sigp/lighthouse/pull/1270
https://github.com/sigp/lighthouse/pull/1277
https://github.com/sigp/lighthouse/pull/1278
https://github.com/sigp/lighthouse/pull/1322
https://github.com/sigp/lighthouse/pull/1327
https://github.com/sigp/lighthouse/pull/1330
https://github.com/sigp/lighthouse/pull/1334
https://github.com/sigp/lighthouse/pull/1738
https://github.com/sigp/lighthouse/pull/1867
https://github.com/libp2p/rust-libp2p/pull/1833
https://github.com/ethereum/eth2.0-specs/pull/2121

/

Accepted

07 Errors produced by
“ ParallelValidatorTreeHash::leaves ” are
non-deterministic

Informational Risk
Accepted

08 Memory leak due to non-graceful shutdown Low Fixed

09 Builder pattern is not strictly adhered to Informational Risk
Accepted

10 rust-crypto is unmaintained and a better alternative
should be used

Informational Fixed

11 Consider using argon2id as a KDF Informational Not Fixed

12 Bias in BLS secret key generation Low Risk
Accepted

13 Unnecessary use of panicking functions Informational Fixed

14 Password to validator private key is stored in
plaintext

High Risk
Accepted

15 Password to wallet is stored in plaintext High Not Fixed

16 Secret key passed as CLI argument High Fixed

17 Insufficient network layer unit tests Informational Partially
Fixed

18 Memory exhaustion via Multiaddr deserialization Low Fixed

19 SSZ snappy decoder reads more data than
specification recommends

Informational Fixed

20 Gossipsub parameters deviate from the specification Informational Fixed

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 56

/

Detailed Fix Log

Finding 1: Codebase uses a crate with a RUSTSEC advisory
Fixed. Lighthouse now uses rusqlite 0.23.1 .

Finding 2: Build process relies on outdated dependencies
Fixed. The db-key dependency could not be upgraded because leveldb (another
dependency) relies on the version currently used. According to a comment from the db-key
author, the newer version is “historic” and related to a change that “didn't yet work out.” All
other cited dependencies were upgraded to the recommended version or newer.

Finding 3: Assumptions about struct field initialization order
Fixed. The Decode macro was adjusted so that the deserialized values are first stored in
local variables, which are then used to initialize the derived struct’s fields. This eliminates
assumptions about the order in which those fields are initialized.

Finding 4: Comments suggest code and documentation are out of date
Fixed. The cited examples were fixed.

Finding 5: Downloaded deposit contract is not validated with a checksum
Fixed. The sha256 hashes of both the deposit contract ABI and its bytecode are now
checked against known constants.

Finding 6: BeaconState objects are mutated upon error
Risk accepted.

Finding 7: Errors produced by “ ParallelValidatorTreeHash::leaves ” are
non-deterministic
Risk accepted.

Finding 8: Memory leak due to non-graceful shutdown
Fixed. The tokio tasks now wait for an “exit” signal that is triggered in various places in the
code. Running the test in Figure 8.2 no longer triggers the warning.

Finding 9: Builder pattern is not strictly adhered to
Risk accepted.

Finding 10: rust-crypto is unmaintained and a better alternative should be used
Fixed. Functionality previously provided by rust-crypto is now provided by the following
crates:

● aes-ctr

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 57

https://github.com/skade/leveldb/issues/14#issuecomment-135335736

/

● hmac

● pbkdf2

● scrypt

● sha2

Finding 11: Consider using argon2id as a KDF
Not fixed.

Finding 12: Bias in BLS secret key generation
Risk accepted.

Finding 13: Unnecessary use of panicking functions
Fixed. The cited example was rewritten to eliminate expect .

Finding 14: Password to validator private key is stored in plaintext
Risk accepted.

Finding 15: Password to wallet is stored in plaintext
Not fixed.

Finding 16: Secret key passed as CLI argument
Fixed. The CLI argument was eliminated. The key is now loaded from a file within the
“network” directory, which is configurable.

Finding 17: Insufficient network layer unit tests
Partially fixed. The finding was addressed by commit e477390 (PR #1867). The code
coverage in commit e477390 does not appear to have changed significantly from Tables
17.1 and 17.2 . However, the number of eth2_libp2p tests did increase:

Number of eth2_libp2p and network tests in commits da44821 and e477390 .

Finding 18: Memory exhaustion via Multiaddr deserialization
Fixed. The “size hint” is now bounded to 4096. Note: we verified that the fix appears not
only in rust-libp2p upstream, but also in the patched version that Lighthouse uses.

Finding 19: SSZ snappy decoder reads more data than specification recommends
Fixed. The implementation now uses a Take reader to limit the amount of data that is read.

Package Commit da44821 Commit e477390

eth2_libp2p 16 25

network 2 2

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 58

https://github.com/sigp/lighthouse/commit/e47739047d0b97d8838e2128b702df2861ff4d76
https://github.com/sigp/lighthouse/pull/1867
https://github.com/sigp/lighthouse/commit/e47739047d0b97d8838e2128b702df2861ff4d76
https://github.com/sigp/lighthouse/tree/da44821e39018a7b480f6ab3ef398776e63446bb
https://github.com/sigp/lighthouse/commit/e47739047d0b97d8838e2128b702df2861ff4d76
https://github.com/sigp/rust-libp2p/commit/f7ab4f7869ecb37c1e2a2327b032ddfafcbcd828
https://doc.rust-lang.org/std/io/struct.Take.html
https://github.com/sigp/lighthouse/tree/da44821e39018a7b480f6ab3ef398776e63446bb
https://github.com/sigp/lighthouse/commit/e47739047d0b97d8838e2128b702df2861ff4d76

/

Finding 20: Gossipsub parameters deviate from the specification
Fixed. The specification was updated to match the Lighthouse implementation (as opposed
to the other way around).

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 59

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md#the-gossip-domain-gossipsub

/

Detailed Issue Discussion
Responses from Sigma Prime for each issue are included as quotes below.

Finding 1: Codebase uses a crate with a RUSTSEC advisory

Package upgraded: https://github.com/sigp/lighthouse/issues/1194
Cargo Audit added to CI: https://github.com/sigp/lighthouse/pull/1192

Finding 2: Build process relies on outdated dependencies

Fixed in: https://github.com/sigp/lighthouse/pull/1322

Finding 3: Assumptions about struct field initialization order

Fixed in: https://github.com/sigp/lighthouse/pull/1210

Finding 4: Comments suggest code and documentation are out of date

Fixed in:

● https://github.com/sigp/lighthouse/pull/1227
● https://github.com/sigp/lighthouse/pull/1327
● https://github.com/sigp/lighthouse/pull/1334

Finding 5: Downloaded deposit contract is not validated with a checksum

Fixed in: https://github.com/sigp/lighthouse/pull/1330

Finding 6: BeaconState objects are mutated upon error

We are aware that states are mutated; however they are always discarded on an error.
This is how the specification is written, and to deviate would make it much more difficult
to compare our implementation to the specification.

In our opinion, the cons of implementing this suggestion would outweigh the pros. As
such, we respectfully choose to not implement this suggestion, but thank Trail of Bits for
raising it.

Finding 7: Errors produced by “ ParallelValidatorTreeHash::leaves ” are
non-deterministic

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 60

https://github.com/sigp/lighthouse/issues/1194
https://github.com/sigp/lighthouse/pull/1192
https://github.com/sigp/lighthouse/pull/1322
https://github.com/sigp/lighthouse/pull/1210
https://github.com/sigp/lighthouse/pull/1227
https://github.com/sigp/lighthouse/pull/1227
https://github.com/sigp/lighthouse/pull/1227
https://github.com/sigp/lighthouse/pull/1330

/

This suggestion becomes a trade-off between exiting early with one, non-deterministic
error or exiting late with all errors.

Given that we do not allow any errors to be returned from this function, we find it more
valuable to exit as soon as possible, rather than do the additional computation to collect
all errors that may occur.

We respectfully choose to not implement this suggestion, but we thank Trail of Bits for
raising it.

Finding 8: Memory leak due to non-graceful shutdown

Fixed in:
https://github.com/sigp/lighthouse/pull/1181/commits/05766811d8c26c908c10723d1f7a
9d887cc5ba1a

Finding 9: Builder pattern is not strictly adhered to

We believe that it is reasonable to choose between the builder and init-struct patterns
across a project. The builder pattern allows for elegant type-inference at compile-time,
whilst the init-struct provides simple runtime configuration for a config file. They are
different tools to be used for different jobs.

The ProductionBeaconNode is always initialized at runtime with static types from a
config file. On the other hand, the ClientBuilder uses the builder pattern so it can be
constructed (at compile time) using different types.

We will review our use of struct instantiation code and consider how we can make it
more elegant.

Finding 10: rust-crypto is unmaintained and a better alternative should be used

Fixed in: https://github.com/sigp/lighthouse/pull/1270

Finding 11: Consider using argon2id as a KDF

We have raised this with the author of EIP-2335 and await a decision.

Finding 12: Bias in BLS secret key generation

EIP-2333 specifically mentions this bias and deems it to be acceptable.

Finding 13: Unnecessary use of panicking functions

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 61

https://github.com/sigp/lighthouse/pull/1181/commits/05766811d8c26c908c10723d1f7a9d887cc5ba1a
https://github.com/sigp/lighthouse/pull/1181/commits/05766811d8c26c908c10723d1f7a9d887cc5ba1a
https://github.com/sigp/lighthouse/pull/1270
https://eips.ethereum.org/EIPS/eip-2333

/

Fixed in https://github.com/sigp/lighthouse/pull/1278

Finding 14: Password to validator private key is stored in plaintext

Unfortunately, here we must choose between security and usability. If we were to rely
upon user input to decrypt validator keys then the validator client would not be able to
reboot without user input. This is undesirable since we wish for the validator client to act
as a typical server application which rarely, if ever, requires user input.

The password files are created with strict file permissions and we understand that we are
following best practices (assuming no mandatory user input).

We look forward to hardware wallets that may help us solve this problem with a higher
degree of security, but these do not yet exist.

We respectfully choose to not implement this suggestion, but we thank Trail of Bits for
raising it.

Finding 15: Password to wallet is stored in plaintext

We plan to implement more user-friendly methods for account management in
upcoming releases. The current functionality is geared towards automated deployment
(e.g., Ansible). We acknowledge this issue and plan to address it in a future release.

Finding 16: Secret key passed as CLI argument

Whilst this was a temporary solution for testing, we have fixed it in:
https://github.com/sigp/lighthouse/pull/1277

Finding 17: Insufficient network layer unit tests

Further tests have been added however complete code coverage of this area is very
difficult. We have in-built simulations that are used to test the complex logic here on
every code change. Further tests have been added in:
https://github.com/sigp/lighthouse/pull/1867

Finding 18: Memory exhaustion via Multiaddr deserialization

This has been resolved in: https://github.com/libp2p/rust-libp2p/pull/1833

Finding 19: SSZ snappy decoder reads more data than specification recommends

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 62

https://github.com/sigp/lighthouse/pull/1278
https://github.com/sigp/lighthouse/pull/1277
https://github.com/sigp/lighthouse/pull/1867
https://github.com/libp2p/rust-libp2p/pull/1833

/

This has been fixed in: https://github.com/sigp/lighthouse/pull/1738

Finding 20: Gossipsub parameters deviate from the specification

The spec has been updated in this PR:
https://github.com/ethereum/eth2.0-specs/pull/2121

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 63

https://github.com/sigp/lighthouse/pull/1738
https://github.com/ethereum/eth2.0-specs/pull/2121

/

D. From Trait Implementation Fuzzing
During the network phase of the engagement, Trail of Bits fuzzed all but two of the
eth2_libp2p and network crates’ From trait implementations, as well as some related
functions.

Table D.1 lists the 18 functions that were fuzzed. We fuzzed these using cargo afl . Each
fuzz target was given its own core, and was fuzzed for at least six hours. If a function was
called in a unit test, we used the arguments to seed the corpus. Otherwise, we used the
argument type’s default values to seed the corpus.

Function Non-default corpus? Crash found?

fn from(req: Request) ->
RPCRequest<TSpec>

No No

fn from(resp: Response<TSpec>) ->
RPCCodedResponse<TSpec>

No No

fn from_identify_info(info:
&IdentifyInfo) -> Client

No Yes

fn from(f: f64) -> Score No No

fn from(s: String) -> ErrorType No No

fn from(s: &str) -> ErrorType No No

fn from(id: u64) -> GoodbyeReason No No

fn from_ssz_bytes(bytes: &[u8]) ->
Result<GoodbyeReason, ssz::DecodeError>

No No

pub fn from_error(response_code: u8,
err: ErrorType) -> RPCCodedResponse::<T>

No No

fn from(err: ssz::DecodeError) ->
RPCError

No No

fn from_quota(quota: Quota) ->
Result<Limiter::<Key>, &'static str>

No No

fn decode(topic: &str) ->
Result<GossipTopic, String>

Yes No

fn from(subnet_id: SubnetId) ->
GossipKind

No No

fn from(peer_id: PeerIdSerialized) -> No No

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 64

https://github.com/rust-fuzz/afl.rs

/

Table D.1: Functions fuzzed during the network phase of the engagement.

Fuzzing revealed two different paths to the same underlying bug, which is in rust-libp2p ’s
serde::Deserialize implementation for Multiaddr (TOB-LIHO-018).

The two From trait implementations that were not fuzzed are:

● fn from(_: tokio::time::Elapsed) -> RPCError

● fn from(err: io::Error) -> RPCError

These were not fuzzed because serde::Deserialize is not implemented for either
tokio::time::Elapsed or std::io::Error . It might have been possible to find a
workaround—by patching tokio , for example. However, we decided that the expected
rewards did not outweigh the effort required.

PeerId

fn from_str(s: &str) ->
Result<PeerIdSerialized, String>

No No

fn from(status: StatusMessage) ->
PeerSyncInfo

No No

fn from(config: &NetworkConfig) ->
UPnPConfig

No Yes

fn from_store_bytes(bytes: &[u8]) ->
Result<PersistedDht, StoreError>

Yes No

© 2020 Trail of Bits Sigma Prime Lighthouse Assessment | 65

